Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1167241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731497

RESUMO

In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery.


Assuntos
Tempestades Ciclônicas , Algoritmos , Benchmarking , Análise por Conglomerados , Tecnologia
2.
bioRxiv ; 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945648

RESUMO

In the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.

3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086929

RESUMO

In Drosophila melanogaster, loss of regenerative capacity in wing imaginal discs coincides with an increase in systemic levels of the steroid hormone ecdysone, a key coordinator of their developmental progression. Regenerating discs release the relaxin hormone Dilp8 (Drosophila insulin-like peptide 8) to limit ecdysone synthesis and extend the regenerative period. Here, we describe how regenerating tissues produce a biphasic response to ecdysone levels: lower concentrations of ecdysone promote local and systemic regenerative signaling, whereas higher concentrations suppress regeneration through the expression of broad splice isoforms. Ecdysone also promotes the expression of wingless during both regeneration and normal development through a distinct regulatory pathway. This dual role for ecdysone explains how regeneration can still be completed successfully in dilp8- mutant larvae: higher ecdysone levels increase the regenerative activity of tissues, allowing regeneration to reach completion in a shorter time. From these observations, we propose that ecdysone hormone signaling functions to coordinate regeneration with developmental progression.


Assuntos
Ecdisona/metabolismo , Regeneração/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônios Esteroides Gonadais/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo , Proteína Wnt1/metabolismo
4.
Curr Top Dev Biol ; 135: 155-201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155358

RESUMO

Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.


Assuntos
Células Germinativas/citologia , Animais , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Epigênese Genética , Fenótipo
5.
Development ; 146(12)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658985

RESUMO

Epigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis. We identify pre-pachytene piRNAs with features of secondary amplification that map most abundantly to the long interspersed element type 1 (L1) family of TEs. L1-ORF1p expression is heterogeneous in fetal germ cells, peaks at mid-gestation and declines concomitantly with increases in piRNAs, nuclear localization of HIWI2 and an increase in H3K9me3. Surprisingly, the same cells with accumulation of L1-ORF1p display highest levels of HIWI2 and H3K9me3. Conversely, the earliest germ cells with high levels of L1-ORF1p express low levels of the chaperone HSP90α. We propose that a subset of germ cells resists L1 expression, whereas L1-expressing germ cells activate the repression pathway that leads to epigenetic silencing of L1 via H3K9me3.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , Testículo/embriologia , Animais , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Análise por Conglomerados , Epigênese Genética , Perfilação da Expressão Gênica , Inativação Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Xenoenxertos , Histonas/metabolismo , Homozigoto , Humanos , Masculino , Camundongos , Chaperonas Moleculares , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Análise de Célula Única , Testículo/transplante
6.
J Immunol ; 198(6): 2445-2456, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159902

RESUMO

Lymphocytes integrate Ag and cytokine receptor signals to make cell fate decisions. Using a specific reporter of TCR signaling that is insensitive to cytokine signaling, Nur77-eGFP, we identify a sharp, minimal threshold of cumulative TCR signaling required for proliferation in CD4 and CD8 T cells that is independent of both Ag concentration and affinity. Unexpectedly, IL-2 reduces this threshold in CD8 but not CD4 T cells, suggesting that integration of multiple mitogenic inputs may alter the minimal requirement for TCR signaling in CD8 T cells. Neither naive CD4 nor naive CD8 T cells are responsive to low doses of IL-2. We show that activated CD8 T cells become responsive to low doses of IL-2 more quickly than CD4 T cells, and propose that this relative delay in turn accounts for the differential effects of IL-2 on the minimal TCR signaling threshold for proliferation in these populations. In contrast to Nur77-eGFP, c-Myc protein expression integrates mitogenic signals downstream of both IL-2 and the TCR, yet marks an invariant minimal threshold of cumulative mitogenic stimulation required for cell division. Our work provides a conceptual framework for understanding the regulation of clonal expansion of CD8 T cells by subthreshold TCR signaling in the context of mitogenic IL-2 signals, thereby rendering CD8 T cells exquisitely dependent upon environmental cues. Conversely, CD4 T cell proliferation requires an invariant minimal intensity of TCR signaling that is not modulated by IL-2, thereby restricting responses to low-affinity or low-abundance self-antigens even in the context of an inflammatory milieu.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/imunologia , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Imunomodulação , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Imunológicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Análise de Célula Única
7.
Genetics ; 204(2): 703-709, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27558136

RESUMO

Damage to Drosophila melanogaster imaginal discs activates a regeneration checkpoint that (1) extends larval development and (2) coordinates the regeneration of the damaged disc with the growth of undamaged discs. These two systemic responses to damage are both mediated by Dilp8, a member of the insulin/insulin-like growth factor/relaxin family of peptide hormones, which is released by regenerating imaginal discs. Growth coordination between regenerating and undamaged imaginal discs is dependent on Dilp8 activation of nitric oxide synthase (NOS) in the prothoracic gland (PG), which slows the growth of undamaged discs by limiting ecdysone synthesis. Here we demonstrate that the Drosophila relaxin receptor homolog Lgr3, a leucine-rich repeat-containing G-protein-coupled receptor, is required for Dilp8-dependent growth coordination and developmental delay during the regeneration checkpoint. Lgr3 regulates these responses to damage via distinct mechanisms in different tissues. Using tissue-specific RNA-interference disruption of Lgr3 expression, we show that Lgr3 functions in the PG upstream of NOS, and is necessary for NOS activation and growth coordination during the regeneration checkpoint. When Lgr3 is depleted from neurons, imaginal disc damage no longer produces either developmental delay or growth inhibition. To reconcile these discrete tissue requirements for Lgr3 during regenerative growth coordination, we demonstrate that Lgr3 activity in both the CNS and PG is necessary for NOS activation in the PG following damage. Together, these results identify new roles for a relaxin receptor in mediating damage signaling to regulate growth and developmental timing.


Assuntos
Proteínas de Drosophila/genética , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Ligação a RNA/genética , Receptores Acoplados a Proteínas G/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Regeneração/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...